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The emergence of antimicrobial resistance (AMR) is outpacing the development of new antibiotics.[1–3] 
Antimicrobial Peptides (AMPs) offer a promising solution to counteract resistance due to their broad 
effectiveness, slow resistance development, predictable metabolism, and relative ease of synthesis.[4] 
However, many AMPs are toxic to healthy human cells. Machine learning (ML) techniques can help 
identify active and non-toxic AMP candidates from a vast pool of potential sequences. Yet, most current 
ML strategies for peptide design focus solely on linear sequences of the 20 natural L-amino acids, which 
does not adequately represent the natural rich chemical diversity of AMPs.[5–11] Additionally, these 
methods depend on large curated datasets that might not always be of optimal quality. In this 
presentation, we delve into two ongoing projects where we leverage ML to design novel AMPs addressing 
these challenges: 

1. Peptide Design Genetic Algorithm (PDGA): This algorithm systematically explores a wide chemical 
space, incorporating both amino acids and peptoid building blocks. By extending beyond linear sequences 
to include potential cyclizations, branching points, and N-terminal cappings, the PDGA investigates a large 
corpus of chemically diverse molecules.[12] We briefly demonstrate how we used the PDGA to generate 
novel bioactive analogs of polymyxin B2. 

2. Leveraging In-House Data: Utilizing a semi-automated 48-well peptide synthesizer, we synthesized and 
tested 234 diastereomers of the antimicrobial peptide ln65.[13] We employed these in-house generated 
sets to train two neural networks, designed to predict antimicrobial activity against the five ESKAPE 
pathogens and hemolytic activity against human erythrocytes. Our results showcase the efficacy of ML 
with lower data volumes, emphasizing the potential of using of high-quality, in-house data for accurate 
predictions. 
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