
Peptide Discovery using CLIPS[™] Phage Display (PDL)

Peter Timmerman, Sangram Kale

Biosynth B.V., Zuidersluisweg 2, 8243 RC Lelystad, the Netherlands peter.timmerman@biosynth.com

Cyclic peptides are an attractive molecular format for the development of therapeutics [1]. Currently, only a handful of these are used in the clinic, including the somatostatin-derived anti-cancer drugs *Lantreotide* and ¹⁷⁷Lu-DOTATOC [2], which is used in **P**eptide **R**eceptor **R**adionucleotide **T**herapy (**PRRT**), as well as the natural immune-suppressant *cyclosporin*. In this lecture, e present here a high-throughput phage display platform for the identification of *de novo* CLIPSTM peptides against a target protein of choice. A similar mRNA-based platform was used for the discovery of Merck's oral *anti*-PCSK9 inhibitor *enlicitide chloride* (previously known as MK-0616) that is currently in Phase-III clinical trials.

In this lecture, we present a few case examples where this platform was used. The first example involves the identification of a series of CLIPSTM peptide binders to the monoclonal antibody Infliximab (RemicadeTM), a clinically approved mAb to treat autoimmune diseases, like Rheumatoid Arthritis (RA) and Crohn's Disease (CD). Another example involves a mirror-image PDL-project in collaboration with the University of Maastricht, where we identified a series of sub-nM all-D CLIPSTM binders against the C-X-C motif *L*-CXCL8. All CLIPSTM binders exclusively recognize the *L*-form of CXCL8 and not the *D*-form. Yet another example involves our first selection campaign with our novel tricyclic CLIPSTM/CLICK-technology platform that we published in 2018 [2]. Selection against a benchmark membrane protein target delivered a ~50 nM tricycle-peptide that shows strong binding to live cells that overexpress the same target on their cell membranes. The final case example also describes a new technological development in our lab, *i.e.* biopanning on live cells in Phage Display. Using the same benchmark protein receptor we identified a set of 7 strong binders that showed binding in FACS of cells overexpressing the membrane receptor. This new technology is of growing interest to identify CLIPSTM binders against target proteins that do not fold properly when expressed recombinantly.

- [1] V. Baeriswyl, C. Heinis, *ChemMedChem* **2013**, *8*, 377-84.
- [2] U. Heinrich, K. Kopla, *Pharmaceuticals* **2019**, *12(3)*, 114, 1-8.
- [3] G. J. J. Richelle, S. Ori, H. Hiemstra, J. H. van Maarseveen, P. Timmerman, *Angew. Chem. Int. Ed.* **2018**, *57(2)*, 501-5.